Pharmacology of AMR-MCH-18, an antagonist of the MCH1 receptor for the treatment of obesity

Bruce Sargent1, Peter Guzzo1 Matthew Surman1, Michele Luche1, Alan Henderson1, Xiao-Wu (May) Jiang1, Dustin Deering1, Mark Hadden1, Peter Michels1, Yuri Khmelnitsky1, Heather Chotkowski1, John Lindsay1, Julianne Zaremba1

RenaSci Consultancy Ltd, Biocity, Nottingham, NG1 1GF, UK

INTRODUCTION

Obesity is a growing concern for public health in industrialized nations across the globe. In the United States alone, over 60% of the population is overweight and over 30% of these people are obese. Obesity is associated with a variety of comorbidities such as diabetes, dyslipidemia, coronary heart disease, stroke and certain cancers. Current pharmaceutical treatments suffer from weak efficacy and significant side effects that limit their use. Therefore, a major need exists for safer, more effective weight loss agents.

Melanin concentrating hormone (MCH) is a cyclic, 19 amino acid neuropeptide expressed in the zona incerta and lateral hypothalamus that regulates food intake and body weight.1 Antagonism of the MCH1 receptor has been shown to be a promising new approach for the treatment of obesity.2

AMR-MCH-18 is representative of a novel structural class of selective, high affinity MCH1 receptor antagonists identified by AMRI. The in vitro and in vivo properties of AMR-MCH-18 are presented.

METHODS AND RESULTS

The affinity of AMR-MCH-18 for the MCH1 receptor (Fig. 1) was determined using a binding assay with [3H]AMR-MCH-1 and cloned human MCH1 receptors.1 A panel of more than 80 GPCRs, ion channels and cytochrome P450s was used to demonstrate the selectivity of AMR-MCH-18 for the MCH1 receptor. Selectivity against the hERG potassium channel was established using a mini-patch clamp assay.

The in vivo efficacy of AMR-MCH-18 was demonstrated in a chronic, 28-day feeding study with male diet-induced obese (DIO) C57BL/6J mice (Fig. 2). The mice were group housed and given free access to a high fat diet (D12451 45% of Kcal derived from fat; Research Diets, New Jersey, USA) and tap water for 14 weeks to induce obesity. At the end of the 14 week period, the animals were singly housed for an additional two week period and placed on reverse phase lighting (lights off for 8 h from 09:30 – 17:30 h). After a 14-day baseline period in which mice were fed ad libitum, mice were treated with AMR-MCH-18 (15 mg/kg bid) in 15 mg/kg and 30 mg/kg. Changes in body weight and food intake were compared to positive control sibutramine. Unlike sibutramine, which showed rapid onset of weight loss followed by significant weight gains, AMR-MCH-18 was characterized by gradual weight loss that was maintained throughout the course of the four week study. Measurement of food intake showed a sustained reduction in the groups treated with AMR-MCH-18 (15 mg/kg and 30 mg/kg) (Fig. 3). In contrast, sibutramine reduced food intake in the first week, and then increased food consumption in weeks two through four. An oral glucose tolerance test on days 29 and 30 showed improvements in insulin sensitivity and glucose tolerance (Fig. 4). Following termination, analysis of body composition (water, fat, protein and ash content) demonstrated that the weight loss caused by AMR-MCH-18 was associated with selective reduction in fat mass (Fig. 5). Analysis of terminal plasma samples revealed significant improvement in plasma leptin levels concomitant with fat loss (Fig. 6). Also following the DIO mouse study, coronal sections of the brain containing the caudate putamen were removed and used to determine the ex vivo MCH1 receptor occupancy (Fig. 7).

CONCLUSIONS

• AMR-MCH-18 is a selective, high affinity MCH1 receptor antagonist.
• AMR-MCH-18 causes gradual weight loss in obese mice.
• Weight loss is accompanied by reduction in food intake.
• Weight loss is associated with selective reduction in fat mass and accompanied by reduction in circulating plasma leptin.
• AMR-MCH-18 improves insulin sensitivity and glucose tolerance in obese mice.

REFERENCES


1 Human receptor; CYP isoform tested: 1A2, 2B6, 2C9, 2C11, 2D6, 3A4; 5-HT = Human Liver Microsomes; 96LM = Mouse Liver Microsomes. Panel of 80 receptors, including GPCRs, ion channels tested at 1 µM; Mini-patch clamp.

2 Current pharmaceutical treatments suffer from weak efficacy and significant side effects that limit their use. Therefore, a major need exists for safer, more effective weight loss agents.

3 AMR-MCH-18 caused statistically significant reductions in average daily food intake at 5 mg/kg in week 2 (8.3%), at 15 mg/kg in weeks 1, 2 and 4 (20.1%, 19.7% and 10.0%, respectively) and at 30 mg/kg in weeks 1, 2, 3 and 4 (24.6%, 21.6%, 9.8% and 7.4%, respectively).

4 The in vivo efficacy of AMR-MCH-18 was demonstrated in a chronic, 28-day feeding study with male diet-induced obese (DIO) C57BL/6J mice (Fig. 2). The mice were group housed and given free access to a high fat diet (D12451 45% of Kcal derived from fat; Research Diets, New Jersey, USA) and tap water for 14 weeks to induce obesity. At the end of the 14 week period, the animals were singly housed for an additional two week period and placed on reverse phase lighting (lights off for 8 h from 09:30 – 17:30 h). After a 14-day baseline period in which mice were fed ad libitum, mice were treated with AMR-MCH-18 (15 mg/kg bid) in 15 mg/kg and 30 mg/kg. Changes in body weight and food intake were compared to positive control sibutramine. Unlike sibutramine, which showed rapid onset of weight loss followed by significant weight gains, AMR-MCH-18 was characterized by gradual weight loss that was maintained throughout the course of the four week study. Measurement of food intake showed a sustained reduction in the groups treated with AMR-MCH-18 (15 mg/kg and 30 mg/kg) (Fig. 3). In contrast, sibutramine reduced food intake in the first week, and then increased food consumption in weeks two through four. An oral glucose tolerance test on days 29 and 30 showed improvements in insulin sensitivity and glucose tolerance (Fig. 4). Following termination, analysis of body composition (water, fat, protein and ash content) demonstrated that the weight loss caused by AMR-MCH-18 was associated with selective reduction in fat mass (Fig. 5). Analysis of terminal plasma samples revealed significant improvement in plasma leptin levels concomitant with fat loss (Fig. 6). Also following the DIO mouse study, coronal sections of the brain containing the caudate putamen were removed and used to determine the ex vivo MCH1 receptor occupancy (Fig. 7).

CONCLUSIONS

• AMR-MCH-18 is a selective, high affinity MCH1 receptor antagonist.
• AMR-MCH-18 causes gradual weight loss in obese mice.
• Weight loss is accompanied by reduction in food intake.
• Weight loss is associated with selective reduction in fat mass and accompanied by reduction in circulating plasma leptin.
• AMR-MCH-18 improves insulin sensitivity and glucose tolerance in obese mice.

REFERENCES